Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines
نویسندگان
چکیده
The amino acid-derived polyamines are organic cations that are essential for growth in all mammalian cells, but their exact roles at the molecular level remain largely unknown. Here we provide evidence that polyamines promote the translation of cyclin-dependent kinase 4 (CDK4) by the action of CUG-binding protein 1 (CUGBP1) and microRNA-222 (miR-222) in intestinal epithelial cells. Both CUGBP1 and miR-222 were found to bind the CDK4 mRNA coding region and 3'-untranslated region and repressed CDK4 translation synergistically. Depletion of cellular polyamines increased cytoplasmic CUGBP1 abundance and miR-222 levels, induced their associations with the CDK4 mRNA, and inhibited CDK4 translation, whereas increasing the levels of cellular polyamines decreased CDK4 mRNA interaction with CUGBP1 and miR-222, in turn inducing CDK4 expression. Polyamine-deficient cells exhibited an increased colocalization of tagged CDK4 mRNA with processing bodies; this colocalization was abolished by silencing CUGBP1 and miR-222. Together, our findings indicate that polyamine-regulated CUGBP1 and miR-222 modulate CDK4 translation at least in part by altering the recruitment of CDK4 mRNA to processing bodies.
منابع مشابه
GSK3β is a new therapeutic target for myotonic dystrophy type 1
Myotonic dystrophy type 1 (DM1), an incurable, neuromuscular disease, is caused by the expansion of CTG repeats within the 3' UTR of DMPK on chromosome 19q. In DM1 patients, mutant DMPK transcripts deregulate RNA metabolism by altering CUG RNA-binding proteins. Several approaches have been proposed for DM1 therapy focused on specific degradation of the mutant CUG repeats or on correction of RNA...
متن کاملGSK3β mediates muscle pathology in myotonic dystrophy.
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease characterized by skeletal muscle wasting, weakness, and myotonia. DM1 is caused by the accumulation of CUG repeats, which alter the biological activities of RNA-binding proteins, including CUG-binding protein 1 (CUGBP1). CUGBP1 is an important skeletal muscle translational regulator that is activated by cyclin D3-dependent kinas...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملVariability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study
Background: Protein flexibility, which has been referred as a dynamic behavior has various roles in proteins’ functions. Furthermore, for some developed tools in bioinformatics, such as protein-protein docking software, considering the protein flexibility, causes a higher degree of accuracy. Through undertaking the present work, we have accomplished the quantification plus analysis of the varia...
متن کاملRNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1.
An RNA CUG triplet repeat binding protein, CUGBP1, regulates splicing and translation of various RNAs. Expansion of RNA CUG repeats in the 3'-untranslated repeat of the mutant myotonin protein kinase (DMPK) mRNA in myotonic dystrophy (DM) is associated with alterations in binding activity of CUGBP1. To investigate whether CUGBP1 is directly affected by expansion of CUG repeats in DM tissues, we...
متن کامل